



Zulassungsstelle für Bauprodukte und Bauarten

**Bautechnisches Prüfamt** 

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts



# Europäische Technische Bewertung

ETA-13/0442 vom 17. September 2018

#### Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

Sormat Einschlaganker LA+ und LAL+

Wegkontrolliert spreizender Dübel in den Größen M8, M10, M12 und M16 zur Verankerung im ungerissenen Beton

Sormat Oy Harjutie 5 21290 RUSKO FINNLAND

Sormat Werk 7

14 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330232-00-0601



# Europäische Technische Bewertung ETA-13/0442

Seite 2 von 14 | 17. September 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.



Europäische Technische Bewertung ETA-13/0442

Seite 3 von 14 | 17. September 2018

#### **Besonderer Teil**

#### 1 Technische Beschreibung des Produkts

Der Sormat Einschlaganker LA+ und LAL+ in den Größen M8, M10, M12 und M16 ist ein Dübel aus galvanisch verzinktem Stahl, der in ein Bohrloch gesetzt und durch wegkontrollierte Verspreizung verankert wird.

Produkt und Produktbeschreibung sind in Anhang A dargestellt.

# 2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe der Nutzungsdauer kann nicht als Garantie des Herstellers verstanden werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die angenommene wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

#### 3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

#### 3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

| Wesentliches Merkmal                                                                                     | Leistung                |
|----------------------------------------------------------------------------------------------------------|-------------------------|
| Charakteristischer Widerstand unter<br>Zugbeanspruchung<br>(statische und quasi-statische Einwirkungen)  | Siehe Anhang C 1        |
| Charakteristischer Widerstand unter<br>Querbeanspruchung<br>(statische und quasi-statische Einwirkungen) | Siehe Anhang C 2        |
| Verschiebungen (statische und quasi-statische Einwirkungen)                                              | Siehe Anhang C 3        |
| Charakteristischer Widerstand und Verschiebungen für seismische Leitungskategorien C1 und C2             | Keine Leistung bestimmt |

#### 3.2 Brandschutz (BWR 2)

| Wesentliches Merkmal | Leistung                |  |
|----------------------|-------------------------|--|
| Brandverhalten       | Klasse A1               |  |
| Feuerwiderstand      | Keine Leistung bestimmt |  |

# Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330232-00-0601 gilt folgende Rechtsgrundlage: [96/582/EG].

Folgendes System ist anzuwenden: 1

Z58067,18 8.06,01-87/18

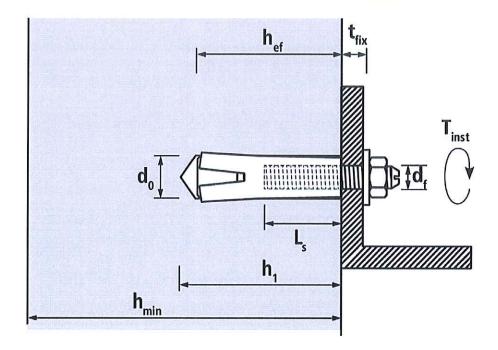


Europäische Technische Bewertung ETA-13/0442

Seite 4 von 14 | 17. September 2018

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.


Ausgestellt in Berlin am 17. September 2018 vom Deutschen Institut für Bautechnik

Dr.-Ing. Lars Eckfeldt i. V. Abteilungsleiter





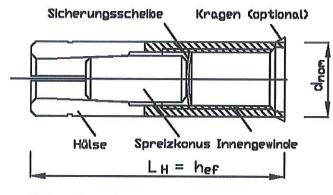
#### Einbauzustand im ungerissenen Beton C20/25 - C50/60

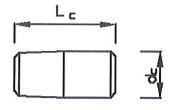


h<sub>1</sub> = Tiefe des Bohrlochs bis zum tiefsten Punkt

h<sub>ef</sub> = effektive Verankerungstiefe

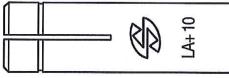
t<sub>fix</sub> = Dicke des Anbauteils L<sub>s</sub> = Gewindelänge im Anker

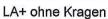

T<sub>inst</sub> = max. Installationsdrehmoment


Sormat Einschlaganker LA+ und LAL+

Produktbeschreibung Einbauzustand Anhang A1




#### Sormat Einschlaganker LA+ und LAL+






**Anker komplett** 

Spreizkonus







LAL+ mit Kragen

Kennzeichnung:

Herstellerkennung

Produktname

Größe

Logo oder Herstellername

LA+ / LAL+ z.B. 10

Beispiele:



#### Tabelle A2: Ankerabmessungen

| 4        | nker         | Hülse          |                  | Konus |                |
|----------|--------------|----------------|------------------|-------|----------------|
| Тур      | Innengewinde | Länge          | Aussen-Ø Hülse   | Länge | Aussen-Ø Konus |
| LA(L)+   |              | L <sub>H</sub> | d <sub>nom</sub> | Lc    | d <sub>C</sub> |
| LA(L)T   |              | [mm]           | [mm]             | [mm]  | [mm]           |
| M 8 x 30 | M8           | 30             | 10               | 12    | 6              |
| M10 x 40 | M10          | 40             | 12               | 16    | 7,5            |
| M12 x 50 | M12          | 50             | 15               | 21    | 9,5            |
| M16 x 65 | M16          | 65             | 20               | 26    | 13             |

Sormat Einschlaganker LA+ und LAL+

Anhang A2

Produktbeschreibung

Produkt, Markierung und Abmessungen



### **Tabelle A3.1: Benennung und Material**

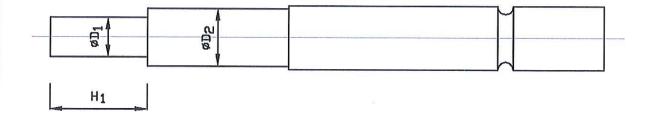
| Benennung               | Material                                                                                                   |
|-------------------------|------------------------------------------------------------------------------------------------------------|
| Hülse                   | Kalt umgeformter Stahl                                                                                     |
| M8<br>M10<br>M12<br>M16 | C1008-C1012 oder EN 10277<br>C1015 oder EN 10277<br>C1008-C1012 oder EN 10277<br>C1008-C1012 oder EN 10277 |
| Spreizkonus             | Kalt umgeformter Stahl<br>C1006-1008                                                                       |
| Sicherungsscheibe       | Papier oder Plastik                                                                                        |

Alle Stahlteile galvanisch verzinkt und blau passiviert ≥ 5 µm gemäß EN ISO 4042

Tabelle A3.2: Festigkeit der Hülse

| Sormat Einschlaganker LA(L)+ |                 |         | Grá | Be  |     |     |
|------------------------------|-----------------|---------|-----|-----|-----|-----|
| Commat Emiscr                | nagariker LA(I  | -)*     | M8  | M10 | M12 | M16 |
| Zugfestigkeit                | f <sub>uk</sub> | [N/mm²] | 535 | 535 | 430 | 430 |
| Streckgrenze                 | f <sub>yk</sub> | [N/mm²] | 485 | 485 | 390 | 390 |

Sormat Einschlaganker LA+ und LAL+


Produktbeschreibung
Materialien

Anhang A3



#### Handsetzwerkzeug

Optional: Handsetzwerkzeug mit Größenmarkierung und/oder Gummigriff möglich



#### Tabelle A4: Abmessung des Setzwerkzeuges

| Einschlagwerkzeug | Einschlagstift |                |                |  |  |  |
|-------------------|----------------|----------------|----------------|--|--|--|
| Stahl HRc 38-42   | Abmessung      |                |                |  |  |  |
| Тур               | D <sub>1</sub> | D <sub>2</sub> | H <sub>1</sub> |  |  |  |
| Typ               | [mm]           | [mm]           | [mm]           |  |  |  |
| ESW 8             | 6,6            | 9,5            | 17,5           |  |  |  |
| ESW 10            | 8,3            | 12             | 23,5           |  |  |  |
| ESW 12            | 10,2           | 14             | 29             |  |  |  |
| ESW 16            | 13,9           | 19             | 39             |  |  |  |

Sormat Einschlaganker LA+ und LAL+

Produktbeschreibung
Setzwerkzeuge

Anhang A4



#### Spezifizierung des Verwendungszwecks

#### Beanspruchung der Verankerung:

Statische und quasi-statische Einwirkungen.

#### Verankerungsgrund:

- · Bewehrter oder unbewehrter Normalbeton nach DIN EN 206-1:2000.
- Festigkeitsklasse C20/25 C50/60 gemäß DIN EN 206-1:2000.
- Nur im ungerissenen Beton.

#### Anwendungsbedingungen (Umweltbedingungen):

Bauteile unter den Bedingungen trockener Innenräume.

#### Bemessung:

- Die Bemessung der Verankerung erfolgt unter Verantwortung eines auf dem Gebiet der Verankerung und des Betonbaues erfahrenen Ingenieurs.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen.
- Die Bemessung der Verankerung erfolgt nach FprEN 1992-4:2016 und EOTA Technical Report TR 055.

#### Einbau:

- Einbau der Anker durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters.
- Herstellen der Bohrlöcher nur durch Hammerbohren.
- Bei Fehlbohrungen: Anordnung eines neuen Bohrlochs in einem Abstand, der mindestens der doppelten Tiefe der Fehlbohrung entspricht oder in geringerem Abstand, wenn die Fehlbohrung mit Mörtel verfüllt wird und wenn sie bei Quer- oder Schrägzuglast nicht in Richtung der aufgebrachten Last liegt.
- Einbau der Anker gemäß der Herstellervorgaben und Zeichnungen unter Verwendung geeigneter Werkzeuge

| Sormat Einschlaganker LA+ und LAL+  | 0         |
|-------------------------------------|-----------|
| Verwendungszweck<br>Spezifikationen | Anhang B1 |



#### Tabelle B2.1: Montagekennwerte

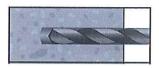
#### Befestigungsschrauben oder Gewindestangen:

Es können die Festigkeitsklassen 4.6, 5.6, 5.8 oder 8.8 gemäß EN ISO 898-1 verwendet werden.

#### Mindesteinschraubtiefe:

Die Länge der Befestigungsschraube ist in Abhängigkeit der Dicke des Anbauteiles  $t_{\text{fix}}$ , zulässiger Toleranzen und nutzbarer Gewindelänge  $L_{\text{s,max}}$  sowie der Mindesteinschraubtiefe  $L_{\text{s,min}}$  festzulegen.

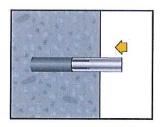
| Sormat Einschlaganker LA(L)+                      |                       |      | Größe |       |       |       |
|---------------------------------------------------|-----------------------|------|-------|-------|-------|-------|
| Comat Emschaganker LA(L)+                         |                       |      | M8    | M10   | M12   | M16   |
| Bohrernenndurchmesser                             | d <sub>o</sub>        | [mm] | 10    | 12    | 15    | 20    |
| Schneidendurchmesser Bohrer                       | d <sub>cut</sub> ≤    | [mm] | 10,45 | 12,50 | 15,50 | 20,55 |
| Innerer Gewindedurchmesser                        | М                     | [mm] | 8     | 10    | 12    | 16    |
| Bohrlochtiefe am tiefsten Punkt                   | h₁≥                   | [mm] | 32    | 43    | 54    | 70    |
| Effektive Verankerungstiefe                       | h <sub>ef</sub>       | [mm] | 30    | 40    | 50    | 65    |
| Maximale Einschraubtiefe                          | L <sub>s,max</sub>    | [mm] | 13    | 16    | 23    | 32    |
| Minimale Einschraubtiefe                          | L <sub>s,min</sub>    | [mm] | 8     | 10    | 12    | 16    |
| Durchgangsloch-Ø im anzuschließenden<br>Anbauteil | d <sub>f</sub> ≤      | [mm] | 9     | 12    | 14    | 18    |
| Maximales Setz-Drehmoment                         | max T <sub>inst</sub> | [Nm] | 8     | 15    | 35    | 60    |


Tabelle B2.2: Mindestbauteildicke und minimaler Achs- und Randabstand

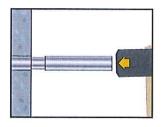
| Sormat Einschlaganker LA(L)+ |                  |      | öße | е   |     |     |
|------------------------------|------------------|------|-----|-----|-----|-----|
| Gormat Emsemag               | anker LA(L)+     |      | M8  | M10 | M12 | M16 |
| Mindestbauteildicke          | h <sub>min</sub> | [mm] | 100 | 100 | 120 | 160 |
| Minimaler Achsabstand        | S <sub>min</sub> | [mm] | 105 | 105 | 125 | 180 |
| Minimaler Randabstand        | C <sub>min</sub> | [mm] | 105 | 140 | 175 | 230 |

| Sormat Einschlaganker LA+ und LAL+   |           |
|--------------------------------------|-----------|
| Verwendungszweck<br>Montagekennwerte | Anhang B2 |




#### Einbauanweisung:




1. Bohrloch erstellen.




2. Bohrloch vom Bohrmehl reinigen (ausblasen).



3. Anker von Hand bzw. durch Hammerschläge ins Bohrloch einbringen. Anker sollte bündig mit der Betonaußenkante sitzen.



4. Mit dem Setzwerkzeug den Anker spreizen. Der Anker ist richtig verspreizt, wenn das Setzwerkzeug am Anker aufliegt.



5. Bauteil befestigen, dabei das maximale  $T_{\text{inst}}$  nicht überschreiten.

Sormat Einschlaganker LA+ und LAL+

Verwendungszweck Einbauanweisung **Anhang B3** 



### Tabelle C1: Bemessungsverfahren A - Charakteristische Zugtragfähigkeit

| Sormat Einschlag                                             | anker L            | A(L)+                      |           |                     | Grö             | Ве        |      |
|--------------------------------------------------------------|--------------------|----------------------------|-----------|---------------------|-----------------|-----------|------|
| Stahlversagen                                                |                    |                            |           | M8                  | M10             | M12       | M16  |
| Charakteristische Tragfähgikeit                              | N <sub>Rk,s</sub>  | [kN]                       | Stahl 4.6 | 14,6                | 23,2            | 33,7      | 62,7 |
| Teilsicherheitsbeiwert                                       | YMs                | [-]                        |           |                     | 2,0             | 0         |      |
| Charakteristische Tragfähgikeit                              | N <sub>Rk,s</sub>  | [kN]                       | Stahl 5.6 | 18,3                | 29,0            | 42,1      | 78,3 |
| Teilsicherheitsbeiwert                                       | YMs                | [-]                        |           |                     | 2,0             | 0         |      |
| Charakteristische Tragfähgikeit                              | N <sub>Rk,s</sub>  | [kN]                       | Stahl 5.8 | 18,3                | 22,5            | 30,8      | 51,5 |
| Teilsicherheitsbeiwert                                       | Yms                | [-]                        |           |                     | 1,              | 5         | •    |
| Charakteristische Tragfähgikeit                              | N <sub>Rk,s</sub>  | [kN]                       | Stahl 8.8 | 17,8                | 22,5            | 30,8      | 51,5 |
| Teilsicherheitsbeiwert                                       | Yms                | [-]                        |           |                     | 1,              | 5         |      |
| Herausziehen                                                 |                    |                            |           |                     |                 |           |      |
| Charakteristische Tragfähgikeit in ungerissenem Beton C20/25 | N <sub>Rk,p</sub>  | [kN]                       |           | 7,5                 | 12              | 16        | 30   |
| Erhöhungsfaktor für N <sub>Rk,p</sub>                        | Ψ <sub>c</sub>     | C30/37                     |           | 1,22                | 1,11            | 1,11 1,22 |      |
|                                                              |                    | C40/50                     |           | 1,41                | 1 1,21 1,41     |           | 1    |
|                                                              |                    | C50/60                     |           | 1,58                | 1,28            | 1,5       | 8    |
| Montagesicherheitsbeiwert                                    | Yinst              | [-]                        |           | 1,0                 |                 | 1,2       |      |
| Betonausbruch                                                |                    |                            |           |                     |                 |           |      |
| Effektive Verankerungstiefe                                  | h <sub>ef</sub>    | [mm]                       |           | 30                  | 40              | 50        | 65   |
| Faktor k <sub>1</sub>                                        | k <sub>ucr,N</sub> | [-]                        |           |                     | 11,             | 0         |      |
| Achsabstand                                                  | S <sub>cr,N</sub>  | [mm]                       |           | 3 x h <sub>ef</sub> |                 |           | _    |
| Randabstand                                                  | C <sub>cr,N</sub>  | [mm] 1,5 x h <sub>ef</sub> |           |                     | h <sub>ef</sub> |           |      |
| Montagesicherheitsbeiwert                                    | Yinst              | [-]                        |           | 1,0 1,2             |                 |           |      |
| Spalten                                                      |                    |                            |           |                     |                 |           |      |
| Achsabstand (Spalten)                                        | S <sub>cr,sp</sub> | [mm]                       |           | 210                 | 280             | 350       | 460  |
| Randabstand (Spalten)                                        | C <sub>cr,sp</sub> | [mm]                       |           | 105                 | 140             | 175       | 230  |
| Montagesicherheitsbeiwert                                    | Yinst              | [-]                        |           | 1,0                 |                 | 1,2       |      |

| Sormat Einschlaganker LA+ und LAL+                        |           |
|-----------------------------------------------------------|-----------|
| Leistungen                                                | Anhang C1 |
| Bemessungsverfahren A, charakteristische Zugtragfähigkeit |           |



### Tabelle C2: Bemessungsverfahren A - Charakteristische Quertragfähigkeit

| Sormat Einschlaganker LA(L)+                    |                                |         |           | Größe |      |       |       |
|-------------------------------------------------|--------------------------------|---------|-----------|-------|------|-------|-------|
| Stahlversagen ohne Hebelarm                     |                                |         |           | M8    | M10  | M12   | M16   |
| Charakteristische Quertragfähigkeit             | V <sub>Rk,s</sub>              | [kN]    | Stahl 4.6 | 7,3   | 9,5  | 15,4  | 25,7  |
| Teilsicherheitsbeiwert                          | Yms                            | [-]     |           | 1,67  | 1,5  |       |       |
| Charakteristische Quertragfähigkeit             | V <sub>Rk,s</sub>              | [kN]    | Stahl 5.6 | 8,9   | 9,5  | 15,4  | 25,7  |
| Teilsicherheitsbeiwert                          | YMs                            | [-]     |           | 1,5   |      |       |       |
| Charakteristische Quertragfähigkeit             | V <sub>Rk,s</sub>              | [kN]    | Stahl 5.8 | 8,9   | 9,5  | 15,4  | 25,7  |
| Teilsicherheitsbeiwert                          | Yms                            | [-]     |           | 1,5   |      |       |       |
| Charakteristische Quertragfähigkeit             | $V_{Rk,s}$                     | [kN]    | Stahl 8.8 | 8,9   | 9,5  | 15,4  | 25,7  |
| Teilsicherheitsbeiwert                          | Yms                            | [-]     |           | 1,5   |      |       |       |
| Stahlversagen mit Hebelarm                      |                                |         |           |       |      |       |       |
| Charakteristisches Biegemoment                  | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]    | Stahl 4.6 | 15,0  | 29,9 | 52,4  | 132,8 |
| Teilsicherheitsbeiwert                          | Yms                            | [-]     |           | 1,67  |      |       |       |
| Charakteristisches Biegemoment                  | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]    | Stahl 5.6 | 18,7  | 37,4 | 65,5  | 165,9 |
| Teilsicherheitsbeiwert                          | YMs                            | [-]     |           | 1,67  |      |       |       |
| Charakteristisches Biegemoment                  | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]    | Stahl 5.8 | 18,7  | 37,4 | 65,5  | 165,9 |
| Teilsicherheitsbeiwert                          | Yms                            | [-]     |           | 1,25  |      |       |       |
| Charakteristisches Biegemoment                  | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]    | Stahl 8.8 | 30,0  | 59,8 | 104,7 | 265,5 |
| Teilsicherheitsbeiwert                          | Yms                            | [-]     |           | 1,25  |      |       |       |
| Betonausbruch auf der lastabgewan               | dten Se                        | ite (Pr | yout)     |       |      |       |       |
| Faktor                                          | k <sub>8</sub>                 | [-]     |           | 1,0   |      |       | 2,0   |
| Teilsicherheitsbeiwert                          | Yinst                          | [-]     |           | 1,0   |      |       |       |
| Betonkantenbruch                                |                                |         |           |       |      |       |       |
| Wirksame Dübellänge bei Querkraft               | l <sub>f</sub>                 | [mm]    |           | 30    | 40   | 50    | 65    |
| Wirksamer Außendurchmesser                      | d <sub>nom</sub>               | [mm]    |           | 10    | 12   | 15    | 20    |
| Montagesicherheitsbeiwert γ <sub>inst</sub> [-] |                                |         | 1,0       |       |      |       |       |

| Sormat Einschlaganker LA+ und LAL+                                           |           |
|------------------------------------------------------------------------------|-----------|
| <b>Leistungen</b> Bemessungsverfahren A, charakteristische Quertragfähigkeit | Anhang C2 |



## Tabelle C3.1: Verschiebungen der Anker unter Zuglast

| Sormat Einschlaganker LA(L)+ |                    |      | M8  | M10 | M12 | M16  |  |
|------------------------------|--------------------|------|-----|-----|-----|------|--|
| Zuglast                      | N                  | [kN] | 3,5 | 4,8 | 6,3 | 11,9 |  |
| zugehörige Verschiebung      | $\delta_{No}$      | [mm] | 0,2 |     |     |      |  |
| zugehörige Verschiebung      | $\delta_{N\infty}$ | [mm] | 1,3 |     |     |      |  |

### Tabelle C3.2: Verschiebungen der Anker unter Querlast

| Sormat Einschlaganker LA(L)+ |                 |      | M8  | M10 | M12 | M16  |
|------------------------------|-----------------|------|-----|-----|-----|------|
| Querlast                     | V               | [kN] | 4,2 | 4,5 | 7,3 | 12,2 |
| zugehörige Verschiebung      | δνο             | [mm] | 1,4 | 1,6 | 2,3 | 1,0  |
| zugehörige Verschiebung      | δ <sub>V∞</sub> | [mm] | 2,1 | 2,4 | 3,5 | 1,5  |

Sormat Einschlaganker LA+ und LAL+

Anhang C3

Leistungen

Verschiebungen unter Zug- und Querlasten