

Zulassungsstelle für Bauprodukte und Bauarten

Bautechnisches Prüfamt

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertung

ETA-05/0009 vom 26. Juni 2018

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Deutsches Institut für Bautechnik

ejotherm NT U und ejotherm NK U

Schlagdübel zur Befestigung von außenseitigen Wärmedämm-Verbundsystemen mit Putzschicht in Beton und Mauerwerk

EJOT Baubefestigungen GmbH In der Stockwiese 35 57334 Bad Laasphe

EJOT 1 EJOT 2 EJOT 3 EJOT 4

12 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330196-01-0604

Europäische Technische Bewertung ETA-05/0009

Seite 2 von 12 | 26. Juni 2018

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Z40073.18 8.06.04-152/18

Europäische Technische Bewertung ETA-05/0009

Seite 3 von 12 | 26. Juni 2018

Besonderer Teil

1 Technische Beschreibung des Produkts

Der Schlagdübel ejotherm NT U mit Teller und der Schlagdübel ejotherm NK U mit Kragenkopf besteht aus einer Dübelhülse aus Polyethylen (Neuware) und einem zugehörigen Spezialnagel aus nichtrostendem Stahl oder galvanisch verzinktem Stahl mit einer Umspritzung aus Polyamid.

Der Dübel darf zusätzlich mit den Dübeltellern SBL 140 *plus* und VT 90 kombiniert werden. Produkt und Produktbeschreibung sind in Anhang A dargestellt.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und unter den Randbedingungen nach Anhang B verwendet wird. Die Prüf- und Bewertungsmethoden, die dieser ETA zu Grunde liegen, führen zur Annahme

Die Prüf- und Bewertungsmethoden, die dieser ETA zu Grunde liegen, fuhren zur Annahme einer Nutzungsdauer des Dübels von mindestens 25 Jahren. Die Angaben zur Nutzungsdauer können nicht als Garantie des Herstellers ausgelegt werden, sondern sind lediglich ein Hilfsmittel zur Auswahl der richtigen Produkte im Hinblick auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angabe der Methoden ihrer Bewertung

3.1 Sicherheit und Barrierefreiheit bei der Nutzung (BWR 4)

Wesentliches Merkmal	Leistung
Charakteristische Werte für Zugbeanspruchung	siehe Anhang C 1
Rand- und Achsabstände	siehe Anhang B 2
Tellersteifigkeit	siehe Anhang C 2
Verschiebungen	siehe Anhang C 2

3.2 Energieeinsparung und Wärmeschutz (BWR 6)

Wesentliches Merkmal	Leistung	
Punktbezogener Wärmedurchgangskoeffizient	siehe Anhang C 2	

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD Nr. 330196-01-0604 gilt folgende Rechtsgrundlage: [97/463/EG].

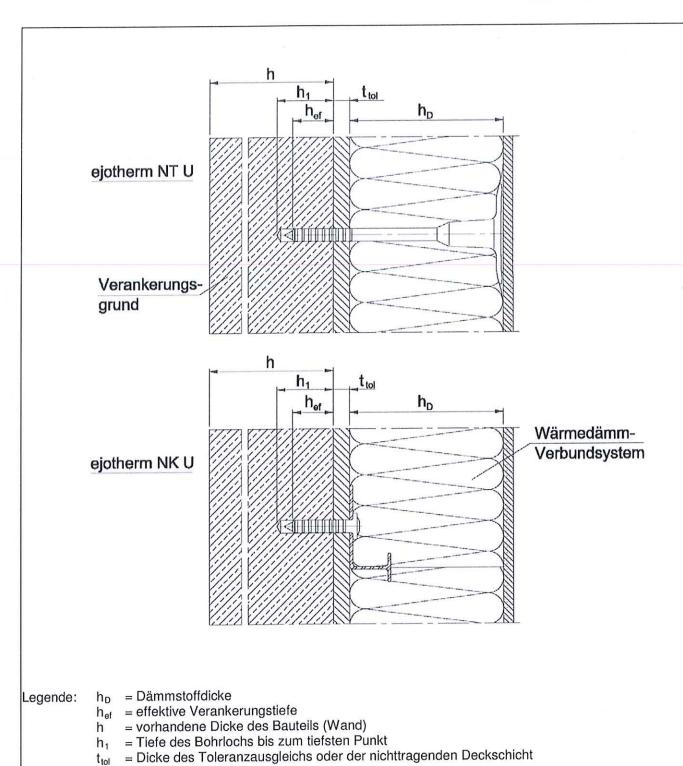
Folgendes System ist anzuwenden: 2+

Z40073.18 8.06.04-152/18

Europäische Technische Bewertung ETA-05/0009

Seite 4 von 12 | 26. Juni 2018

Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

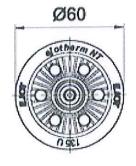

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 26. Juni 2018 vom Deutschen Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Abteilungsleiter

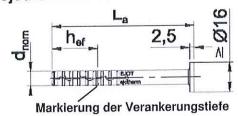
ejotherm NT U und ejotherm NK U

Produktbeschreibung

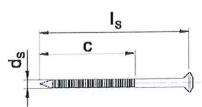

Einbauzustand

Anhang A 1

ejotherm NT U



C C


Prägung: Werkzeichen (EJOT) Dübeltyp (ejotherm NT U) Dübellänge (z.B. 135)

Spezialnagel mit Umspritzung

ejotherm NK U

Prägung: Werkzeichen (EJOT) Dübeltyp (ejotherm NK U) Dübellänge (z.B. 65)

Tabelle A1: Abmessungen zugehöriger Spezialnagel Dübelhülse Farbe Dübeltyp max. La d_s min La hef d_{nom} [mm] [mm] [mm] [mm] [mm] [mm] 4,5 45 295 25 95 ejotherm NT U natur 8 45 25 45 105 4,5 ejotherm NK U natur 8

Bestimmung der max. Dämmstoffdicke h_D [mm] für ejotherm NT U:

$$h_D = L_a - t_{tol} - h_{ef}$$

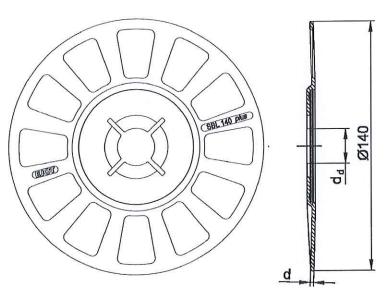
 $h_D = 135 - 10 - 25$

$$(L_a = z.B. 135; t_{tol} = 10)$$

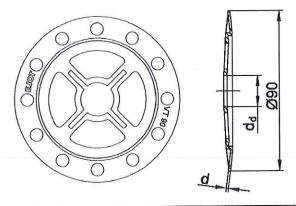
 $h_{Dmax} = 100$

ejotherm NT U und ejotherm NK U

Produktbeschreibung


Abmessung und Prägung Dübelhülse, Spezialnagel

Anhang A 2



Werkstoff	
Polyethylen (Neuware), PE-HI	D, Farbe: natur
Polyamid, PA 6, GF 50	
Stahl, galvanisch verzinkt: ≥ 5 µm nach EN ISO 4042:1999, blau passiviert	nichtrostender Stahl: Werkstoffnummer 1.4401 oder 1.4571 Werkstoffnummer 1.4301 oder 1.4567
	Polyethylen (Neuware), PE-H Polyamid, PA 6, GF 50 Stahl, galvanisch verzinkt: ≥ 5 µm nach EN ISO

Aufsteckteller in Kombination mit ejotherm NT U

SBL 1	40 plus
Farbe	natur
d _d [mm]	20,0
d [mm]	2,0
Werkstoff	1) 2)

VT 90	1700 000 000 000
Farbe	natur
d _d [mm]	17,5
d [mm]	1,2
Werkstoff	1) 2)

ejotherm NT U und ejotherm NK U

Produktbeschreibung

Werkstoffe,

Dübelteller in Kombination mit ejotherm NT U

Anhang A 3

Angaben zum Verwendungszweck

Beanspruchung der Verankerung:

 Der Dübel darf nur zur Übertragung von Windsoglasten und nicht zur Übertragung der Eigenlasten des Wärmedämm-Verbundsystems herangezogen werden.

Verankerungsgrund:

- Normalbeton (Nutzungskategorie A) nach Anhang C 1.
- · Vollstein Mauerwerk (Nutzungskategorie B) nach Anhang C 1.
- Hohl- oder Lochsteine (Nutzungskategorie C) nach Anhang C 1.
- Bei anderen Steinen der Nutzungskategorie A, B, C, darf die charakteristische Tragfähigkeit der Dübel durch Baustellenversuche nach EOTA Technical Report TR 051 Fassung Dezember 2016 ermittelt werden

Temperaturbereich:

0°C to +40°C (max. Kurzzeit-Temperatur +40°C and max. Langzeit-Temperatur +24°C)

Bemessung:

- Die Bemessung der Verankerungen erfolgt in der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerks erfahrenen Ingenieurs mit den Teilsicherheitsbeiwerten $\gamma_m = 2,0$ und $\gamma_F = 1,5$ sofern keine anderen nationalen Regelungen vorliegen.
- Unter Berücksichtigung der zu verankernden Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Die Position der Dübel ist in den Konstruktionszeichnungen anzugeben.
- Die Dübel sind nur zur Mehrfachbefestigung von WDVS zu verwenden.

Einbau:

- · Beachtung des Bohrlochverfahrens nach Anhang C 1.
- · Einbau des Dübels durch entsprechend geschultes Personal unter der Aufsicht des Bauleiters
- Temperatur beim Setzen des Dübels von 0°C bis +40°C
- UV-Belastung durch Sonneneinstrahlung des ungeschützten, d.h. unverputzten Dübels ≤ 6 Wochen

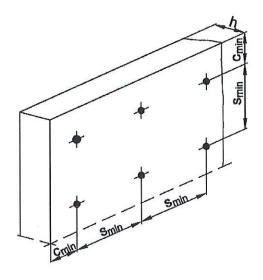
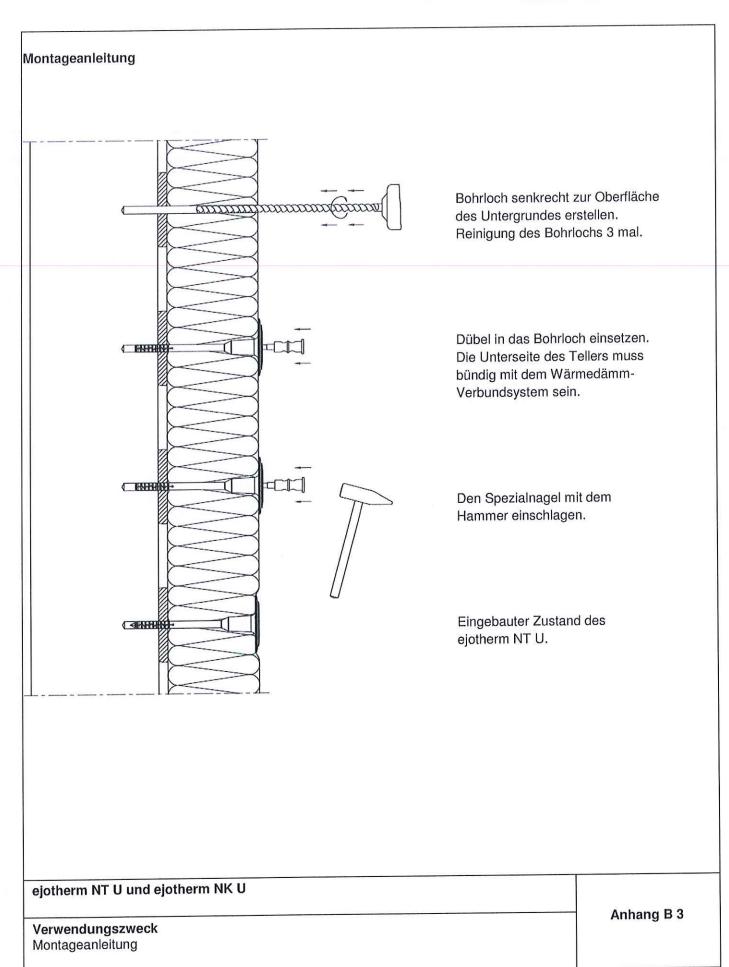

ejotherm NT U und ejotherm NK U	
Verwendungszweck Spezifikationen	Anhang B 1

Tabelle B1: Montagekennwerte		
Dübeltyp		ejotherm NT U / NK U
		Nutzungskategorie
		A, B, C
Bohrernenndurchmesser	d ₀ [mm] =	8
Bohrerschneidendurchmesser	d _{cut} [mm] ≤	8,45
Tiefe des Bohrlochs bis zum tiefsten Punkt	h₁ [mm]≥	35
effektive Verankerungstiefe	h _{ef} [mm] ≥	25


Tabelle B2: Dübelabstände und Bauteila	bmessungen	
Dübeltyp		ejotherm NT U / NK U
minimaler zulässiger Achsabstand	$s_{min} \geq [mm]$	100
minimaler zulässiger Randabstand	$c_{min} \geq [mm]$	100
Mindestbauteildicke	h ≥ [mm]	100

Schema der Dübelabstände

ejotherm NT U und ejotherm NK U	
cjoinerm it o and ojoinerm in c	Aukana D.O
Verwendungszweck	Anhang B 2
Montagekennwerte, Mindestbauteildicke	
Minimale Achs- und Randabstände	

Dübeltyp					ejotherm NT U / NK U
Verankerungsgrund	Roh- dichte p [kg/dm³]	Mindest- druck- festigkeit f _b [N/mm ²]	Bemerkungen	Bohr- verfahren	N _{Rk} [kN]
Beton C12/15 EN 206-1:2000				Hammer	1,2
Beton C16/20 – C50/60 EN 206-1:2000				Hammer	1,2
Mauerziegel, Mz EN 771-1:2011	≥ 1,8	12	Querschnitt bis 15 % durch Lochung senkrecht zur Lagefläche reduziert	Hammer	1,5
Kalksandvollstein, KS EN 771-2:2011	≥ 1,8	12	Querschnitt bis 15 % durch Lochung senkrecht zur Lagefläche reduziert	Hammer	1,5
Hochlochziegel, HLz EN 771-1:2011	≥ 1,2	12	Querschnitt ≥ 15 % und ≤ 50 % durch Lochung senkrecht zur Lagefläche reduziert Außenstegdicke ≥ 11 mm	Dreh- bohren	0,9 1)
Kalksandlochstein, KSL EN 771-2:2011	≥ 1,6	12	Querschnitt ≥ 15 % und ≤ 50 % durch Lochung senkrecht zur Lagefläche reduziert Außenstegdicke ≥ 20 mm	Dreh- bohren	1,5 ¹⁾
Leichtbetonvollstein, V EN 771-3:2011	≥ 0,9	4	Flächenanteil der Lagerfläche des Griffloches bis zu 10% Max. Größe Griffloch: 110 mm lang u. 45 mm breit	Dreh- bohren	0,5
Hohlblöcke aus Leichtbeton, Hbl EN 771-3:2011	≥ 0,5	2	Querschnitt ≥ 15 % und ≤ 50 % durch Lochung senkrecht zur Lagefläche reduziert Außenstegdicke ≥ 30 mm	Dreh- bohren	0,5 1)

Der Wert gilt für die angegebenen Mindestaußenstegdicken, ansonsten ist die charakteristische Zugtragfähigkeit durch Ausziehversuche am Bauwerk zu ermitteln.

ejotherm NT U und ejotherm NK U	
Leistungen Charakteristische Zugtragfähigkeit	Anhang C 1

TR 025:2016-05	r Wärmedurchgangskoeffizient gem	peter coloniales des la procursión in
D#1 11	Dämmstoffdicke	punktbezogener Wärmedurchgangskoeffizient
Dübeltyp	h _D [mm]	χ [W/K]
ejotherm NT U	60 – 260	0,002

Tabelle C3: Tellersteif	igkeit gemäß EOTA Technic	al Report TR 025:2016-05	
Dübeltyp	Durchmesser des Dübeltellers [mm]	Tragfähigkeit des Dübeltellers [mm]	Tellersteifigkeit [kN/mm]
ejotherm NT U	60	2,43	0,6

Tabelle C4: Verschiebungen			ejotherm NT U / ejotherm NK U	
Verankerungsgrund	Rohdichte ρ [kg/dm³]	Mindest- Druckfestigkeit f _b [N/mm²]	Zugkraft N [kN]	Verschiebung ^δ (N) [kN/mm]
Beton C12/15 EN 206-1:2000			0,4	0,3
Beton C16/20 – C50/60 EN 206-1:2000			0,4	0,5
Mauerziegel, Mz EN 771-1:2011	≥ 1,8	12	0,5	0,4
Kalksandvollstein, KS EN 771-2:2011	≥ 1,8	12	0,5	0,5
Hochlochziegel, HLz EN 771-1:2011	≥ 1,2	12	0,3	0,3
Kalksandlochstein, KSL EN 771-2:2011	≥ 1,6	12	0,5	0,5
Leichtbetonvollstein, V EN 771-3:2011	≥ 0,9	4	0,25	0,4
Hohlblöcke aus Leichtbeton, Hbl EN 771-3:2011	≥ 0,5	2	0,15	0,3

ejotherm NT U und ejotherm NK U	
Leistungen Punktbezogener Wärmedurchgangskoeffizient, Tellersteifigkeit, Verschiebungen	Anhang C 2